Skip to contents

This function generates a bubble plot to visualize the results of the PCI calculation. It shows the mean action acceptability on the y-axis and the PCI value as the size of the bubbles.

Create a bubble plot to visualize PCI results. This function generates a bubble plot where each bubble represents a group. The size of the bubble corresponds to the PCI value, and the y-axis shows the mean action acceptability for each group.

Usage

bubble(
  df3,
  scale_type = c("bipolar", "unipolar"),
  ylim_range = 4,
  unipolar_ylim = c(1, 9),
  xlab = "",
  ylab = "Action acceptability",
  title = NULL,
  bubble_color = "gray80",
  bubble_stroke = "black"
)

bubble(
  df3,
  scale_type = c("bipolar", "unipolar"),
  ylim_range = 4,
  unipolar_ylim = c(1, 9),
  xlab = "",
  ylab = "Action acceptability",
  title = NULL,
  bubble_color = "gray80",
  bubble_stroke = "black"
)

Arguments

df3

A data frame generated by the pci function, containing the PCI values and other statistics.

scale_type

The scale type used for the plot: 'bipolar' or 'unipolar'. Default is 'bipolar'.

ylim_range

For 'bipolar' scale, the range of the y-axis. Must be an integer between 1 and 4.

unipolar_ylim

A numeric vector of length 2 specifying the y-axis limits for 'unipolar' scale.

xlab

The label for the x-axis. Default is an empty string.

ylab

The label for the y-axis. Default is 'Action acceptability'.

title

Optional title for the plot. Default is NULL.

bubble_color

The fill color of the bubbles. Default is 'gray80'.

bubble_stroke

The border color of the bubbles. Default is 'black'.

Value

A ggplot2 object representing the bubble plot.

A ggplot2 object representing the bubble plot.

Details

The bubble plot displays the 'Mean' value on the y-axis and the PCI value as the size of the bubbles. It helps to visualize the relationship between action acceptability (mean score) and the potential for conflict index (PCI) for each category in the dataset.

Examples

data <- data.frame(
  Category = rep(c('A', 'B', 'C'), each = 3),
  Value = c(-1, 0, 1, -1, 0, 1, -1, 0, 1)
)
df2 <- counting(data)
#> Error in dplyr::select(., all_of(cols)):  In argument: `all_of(cols)`.
#> Caused by error:
#> ! argument "cols" is missing, with no default
df3 <- pci(df2)
#> Error: object 'df2' not found
bubble(df3)
#> Error: object 'df3' not found

df3 <- pci(df2)
#> Error: object 'df2' not found
bubble(df3)
#> Error: object 'df3' not found